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Top-down cortical input during NREM sleep consolidates
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During tactile perception, long-range intracortical top-down axonal projections are essential for
processing sensory information. Whether these projections regulate sleep-dependent long-term memory
consolidation is unknown. We altered top-down inputs from higher order cortex to sensory cortex during
sleep and examined the consolidation of memories acquired earlier during waking texture perception.
Mice learned novel textures and consolidated them during sleep. Within the first hour of non-rapid eye
movement (NREM) sleep, optogenetic inhibition of top-down projecting axons from secondary motor
cortex (M2) to primary somatosensory cortex (S1) impaired sleep-dependent reactivation of S1 neurons
and memory consolidation. In NREM sleep and sleep-deprived states, closed-loop asynchronous or
synchronous M2-S1 co-activation, respectively, reduced or prolonged memory retention. Top-down
cortical information flow in NREM sleep is thus required for perceptual memory consolidation.

Non-rapid eye movement (NREM) sleep is essential for
memory consolidation of an animal’s awake motor (I) and
sensory (2) learning experience. During NREM, synchronous
0.5 to 4 Hz oscillations (slow wave activity, SWA) sweep
across cortical areas (3-5) suggesting that interregional
transfer of internal information in NREM has a role in
memory consolidation (6-8). We recently identified a
reverberating long-range top-down intracortical circuit that
underlies somatosensory perception in the mouse hindpaw
(9) consisting of sensory input from the primary
somatosensory cortex (S1) to the secondary motor cortex
(M2) and a reciprocal top-down feedback projection from
M2 to S1. Optogenetic inhibition of the top-down projection
impaired accurate tactile perception. However, whether
similar top-down cortical inputs during sleep have a critical
role in memory consolidation remains unexamined.

To assess memory consolidation, we developed a floor-
texture recognition (FTR) task (Fig. 1A) based on natural
novelty preference in mice (10). During the sampling period,
mice explored objects on the left and right sides of an arena
containing smooth floors with no behavioral preference
(Fig. 1B). However, during the testing period, mice preferen-
tially explored the object on the novel texture (Fig. 1B). We
defined the strength of memory for the familiar texture by
the relative amount of time spent exploring an object on the
novel texture and for a second texture combination (fig. S2).

The memory retention period lasted for 2 days (fig. S3).
Mice do not have an innate preference for groovy or smooth
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textures (fig. S4). No change in performance was observed
with whisker-trimmed mice in a dark room (fig. S5). Opto-
genetic silencing of S1 sensory cortex hindpaw area im-
paired task performance (fig. S6). Similar to other
perceptual recognition tasks (7I), behavioral performance
declined with sleep deprivation (SD) following the sampling
period (fig. S7). In the light phase, SD during the first hour
of the resting period, after the sampling period, produced a
decline in performance that was not observed with SD in
the resting period 6-7 hours later (fig. S7). Even in testing
periods starting immediately after SD (i.e., 1 hour interval
with SD), mice showed impaired consolidation (fig. S7).
Without SD, mice showed impaired consolidation at the
start of the dark phase (fig. S7), when mice are active period
and in a shorter sleep period (12). These results indicate the
sleep dependence of the FTR task. Recognition tasks may
involve synaptic plasticity (I3), and N-methyl-d-aspartate
(NMDA) receptor blockers degraded performance (fig. S8).
To test hippocampal dependence, we injected AAV-FLEX-
Tetanus Toxin (I4) into the CAl region of CaMKIIx-Cre
transgenic mice (15) and immunohistochemically confirmed
the blockade of synaptic transmission (16) at the subiculum,
the primary site of termination of CAl axons (fig. S9). Per-
formance in the FTR task did not decline indicating that it
is likely independent of the hippocampus (fig. S9).

We examined whether M2 input to S1 affected ongoing
perception and consolidation by optogenetically inactivating
neural activity during the sampling period, resting period,
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or testing period in the FTR task (fig. S10). Inactivation of
M2 fibers in S1 during the sampling or testing periods de-
creased task performance (fig. S10). S1 firing activity in the
awake state was significantly reduced with top-down inacti-
vation (86.8 + 2.8%, n = 24 units, P < 0.001, light on vs. off
periods, one-sample #-test). Inactivated S1 fibers in M2 re-
sulted in similar data (fig. S10).

We performed optogenetic inactivation of M2 fibers in S1
(Fig. 2A) during the resting period in the first hour after the
sampling period that included at least three brain states:
42.9 + 6.3% (n = 7 mice) in an awake state (normalized to 1
hour) with small high-frequency electroencephalographic
(EEQG) activity and large electromyographic (EMQG) activity;
54.5 = 5.9% (n = 7) in NREM sleep with slow-wave activity
(SWA, 0.5-4 Hz) and a silent EMG; and 2.6 + 0.96% (n = 7)
in rapid eye movement (REM) sleep with EEG activity simi-
lar to the awake state and a silent EMG (Fig. 2B). We inacti-
vated M2 fibers or S1 fibers during the resting period in the
first hour or 6-7 hours after the sampling period (Fig. 2C)
with a closed-loop online photostimulation system (>90%
accuracy, see fig. S11). A quiet wakefulness (QW) state was
negligible in the first hour (0.4 + 0.1% in NREM illumina-
tion, 3.4 + 1.2% in awake illumination, fig. S11). Photostimu-
lation in the awake or NREM sleep states did not alter the
total duration of the three brain states (fig. S12 and S13).
Optogenetic inactivation of M2 fibers during the resting-
awake state did not affect task performance in the testing
period (Fig. 2D) but significantly decreased task perfor-
mance during the resting period-NREM sleep immediately
after the sampling period (Fig. 2D), while inactivation dur-
ing resting-NREM sleep 6-7 hours after the sampling period
did not (Fig. 2D). Similarly, inactivation of S1 fibers during
resting-NREM sleep immediately after (0-1 hour) the sam-
pling period did not alter performance (Fig. 2E). In contrast,
visual based task did not require hindpaw M2 to S1 inputs
in the three periods (fig. S14). These results indicated that
tactile memory consolidation requires M2 input to S1 during
NREM sleep shortly after the sampling period.

We asked why M2 to S1 top-down input, and not vice
versa, regulates memory consolidation specifically during
resting-NREM sleep (Fig. 2D). We hypothesized that the
optogenetics disrupts the causal directional regulation by
M2 to S1 activity and/or suppresses the prominent emer-
gence of reactivated neurons in S1, as SWA during NREM
sleep propagates in an anteroposterior direction (3, 4, 17).
NREM sleep accompanies the reactivation of neurons relat-
ed to animal’s sensory experience before sleep, which is
thought to be crucial for memory consolidation (18). We
performed a Granger causality analysis (19, 20), which can
predict directed functional (causal) connections between
cortical areas. We recorded and analyzed local field poten-
tials (LFPs) from both M2 and S1 with and without optoge-
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netic inhibition of M2 to S1 projection (Fig. 3, A to C) (note:
hereafter, we focused on the resting period immediately
after the sampling period). Brain state-dependent pho-
tostimulation was performed by visual observation of online
EEG and EMG data (fig. S11). Coherence analysis indicated
higher synchronized M2-S1 activity in the delta range (0.5-4
Hz) in S1 and M2 LFPs during NREM sleep compared to the
awake state (Fig. 3D). A power spectrum in the delta range
during NREM sleep was not altered by optogenetic stimula-
tion (Fig. 3E and fig. S15). Without optogenetics, a signifi-
cant increase in causality in both directions (M2 to S1 and
vice versa) during the sampling period and less causality
during the resting-awake state (fig. S16) suggesting that on-
going perception requires both pathways (fig. S10) (9). The
lower causality from M2 to S1 suggests that memory consol-
idation does not require M2 inputs during the resting-awake
state (Fig. 2, D and E). Causality from M2 to S1 during pre-
sampling-NREM sleep and resting-NREM sleep were signifi-
cantly higher than the resting-awake state, indicating brain
state dependence (fig. S17). With optogenetic inactivation,
we observed a decrease of causality only in the M2-S1 direc-
tion during resting-NREM sleep (Fig. 3F).

We tested whether reactivated neurons were suppressed
by optogenetic inactivation with tetrode recordings from M2
and S1 (Fig. 3G). Single unit activity was recorded during
the sampling period, and NREM sleep before (pre-) and af-
ter (post-) the sampling (fig. S18). Reactivated neurons were
defined based on total firing activity normalized to pre-
sampling NREM sleep (7). S1 and M2 neurons that were ac-
tive in the sampling period were also active during post-
sampling NREM sleep. Conversely, neurons that were less
active in the sampling period were also less active (Fig. 3, H
and I). Optogenetic inactivation of M2 fibers did not sup-
press this linear correlation in M2 (Fig. 3H), but decreased
it in S1 (Fig. 3I). Optogenetic inactivation of M2 axons sup-
pressed M2-S1 causality (Fig. 3F), reactivated S1 neurons
(Fig. 31) and task performance (Fig. 2D).

We tested whether neuronal reactivation is sufficient for
memory consolidation by optogenetically activating both
areas in a synchronous or anti-synchronous manner (Fig.
4A). We used Thyl-channelrhodopsin-2 (ChR2) transgenic
mice in which mostly L5 cortical neurons express ChR2 (21).
We confirmed that light stimulation to M2 and S1 reliably
evokes firing during NREM sleep (Fig. 4, B to E). Under
resting-NREM sleep for 30 min in total, M2 and S1 were
synchronously activated at 2 Hz with an in-phase (Fig. 4, B
and C) or an anti-phase pattern (Fig. 4, D and E). Synchro-
nous activation did not change task performance in the test-
ing period 1 day after the sampling period. In wild-type
mice, novelty preference decayed after 2 days (fig. S3), but
synchronous stimulation prolonged memory retention to at
least 4 days after the sampling period (Fig. 4F). In contrast,
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anti-synchronous activation resulted in a decrease in per-
formance in the testing period 1 day after the sampling pe-
riod (Fig. 4F). Synchronized co-activation of M2 and S1
during SD promoted memory consolidation over 4-day in-
tervals (Fig. 4, G and H).

In this study, we showed that perceptual memory consol-
idation requires top-down cortico-cortical input during
NREM sleep. Memory consolidation was dependent on
causal fronto-parietal information flow during ~4% of total
sleep time (inactivation during the cumulative 30 min of
NREM sleep vs. the 12 hours of total sleep in mice) (22). Our
findings demonstrate a causal relationship between cortical
top-down projections and reactivated neurons for memory
consolidation, and suggest a general hierarchical control by
presynaptic neurons in higher cortical areas in controlling
lower sensory and motor areas to regulate memory consoli-
dation (23). Reactivation of cortico-cortical regions underly-
ing a top-down circuit could enhance memory retention
periods (Fig. 4F). Further, synchronized co-activation of M2
and S1 could overcome the physiologically adverse effects of
SD and retain a long-term memory (Fig. 4H). These results
indicate that perceptual memory consolidation may not re-
quire sleep per se, but that synchronized co-activation of
hierarchical cortical pathways, enabled by slow wave activi-
ty in NREM sleep, is necessary and sufficient for sensory
experience to be consolidated in memory.
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Fig. 1. Floor texture recognition task. (A) Behavioral paradigm. (B) Object exploration time on a texture in the
sampling period and on a novel texture in the testing period. Data are means + SEM; statistical significance from

50% chance level (##P < 0.01) was assessed by one-sample t-test.
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Fig. 2. Optogenetic inactivation of M2 axons impairs memory consolidation. (A) Diagram of the miniature
wireless LED device that was attached to S1 (or M2) in both hemispheres. AAV-ArchT or AAV-GFP was injected
(Inset) into M2 (or S1) in both hemispheres. (B) Examples of EEG and EMG recordings during the resting
period. Brain states were identified with EEG recordings (see Methods). (C) Diagram of sleep-state specific
optogenetics. (D) Summary for the task when M2 fibers were inactivated at S1 during the three periods. (E)
Summary for the task when Sl fibers were inactivated at M2 during resting-NREM sleep (0O-1 hours after
sampling period). The cumulative illumination time was 30 min in each state. Statistical significance among
more than 2 groups (**P < 0.01) was assessed by one-way ANOVA with Tukey's post-hoc test, statistical
significance between 2 groups was assessed by Student’s t-test, statistical significance from 50% chance level
(#P < 0.05, ##P < 0.01) was assessed by one-sample t-test.
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Fig. 4. Memory consolidation depends on the phase synchrony of slow waves. (A) Optogenetic
activation of M2 and S1 with local field potential (LFP) recordings with single electrodes. (B) Top:
Experimental timeline for synchronous photostimulation. Middle and Bottom: LFPs and multi-unit activity
(MUA) recordings from M2 (middle) and S1 (bottom) during resting-NREM sleep. (C) Normalized firing
activities during light on (normalized to interval off periods). (D) LFPs and MUA with anti-synchronous
photostimulation. (E) Normalized firing activities. (F) Task performance after photostimulation during
resting-NREM sleep. (G) Left: behavioral paradigm. Sleep after sampling period was deprived for 1 hour
with synchronized co-activation of M2 and Sl in the transgenic mice. Right: Photostimulation protocol. The
photostimulation (2 Hz) during the SD experiment was applied according to the NREM sleep pattern from
Mouse A. (H) Summary of task performance after photostimulation. The cumulative illumination time was
30 min. Statistical significance from off period firing rate (#P < 0.05, ##P < 0.01) or from 50% chance level
(#P < 0.05) was assessed by one-sample t-test.
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